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Abstract

Memory may be the only system component that is more
commoditized than a microprocessor. To simultaneously
exploit this and address the impending memory wall, pro-
cessing in memory (PIM) research efforts are considering
ways to move processing into memory without significantly
increasing the cost of the memory. As such, PIM devices
may become the basis for future commodity clusters. Al-
though these PIM devices may leverage new computational
paradigms such as hardware support for multi-threading
and traveling threads, they must provide support for legacy
programming models if they are to supplant commodity
clusters. This paper presents a prototype implementation
of MPI over a traveling thread mechanism called parcels.
A performance analysis indicates that the direct hardware
support of a traveling thread model can lead to an efficient,
lightweight MPI implementation.

1. Introduction

With the memory wall looming for microprocessors,
there is a variety of efforts underway to determine how
best to avoid it. One active area of research is process-
ing in memory (PIM) technology. The PIM approach in-
tegrates processors in the memory device. The advantages
are a dramatic increase in memory bandwidth and a signifi-
cant decrease in memory latency. Many researchers believe
that these devices can yield a large improvement in perfor-
mance with a modest increase in cost. This is particularly

�The bulk of the work described here was done at Sandia National Labs.
The PIM were concepts developed at Notre Dame, and funded by JPL un-
der the HTMT project, by DARPA under the DIVA project, and by DARPA
through Cray Inc. as part of the HPCS program.

�Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

true if PIMs are based on commodity DRAM technology.
Mass market applications for such a commodity DRAM
PIM range from systems-on-a-chip, as in a cell phone or
PDA, to the memory or entire node in a future commod-
ity cluster. As such, PIMs have the potential to exceed the
volumes of the current microprocessor market. Thus, they
may influence the design of next-generation microproces-
sors and memory systems and have the potential to be the
basis of future commodity clusters.

One approach to PIM technologies is to architect the
PIM device specifically for parallel computing. This seems
counter to the use of such devices in cell phones; however,
most PIM approaches are considering multiple processors
per DRAM device. Thus, the only difference is that the mul-
tiprocessing capabilities would need to be extended across
multiple chips. Indeed, some PIM researchers believe that
single chip and massively parallel systems should use the
same parallelism mechanisms. Multi-threading and travel-
ing threads (based on parcels) are two of the techniques that
are being proposed as parallelism mechanisms. In architec-
tures such as PIM Lite[6] or MIND[23], hardware support
will be provided to switch between multiple threads in a
single cycle. More interestingly the communication mech-
anism, parcels, will contain thread state to allow extremely
lightweight remote invocation (or migration) of threads.

Achieving maximum performance from such PIM based
systems may require a change from the message passing
model that is widespread today; however, it is critical for
PIM based systems to provide reasonable performance on
current codes. This paper discusses a prototype implemen-
tation of MPI using traveling threads. The prototype imple-
mentation contains a minimal number of commonly used
operations, but it serves as a platform to evaluate MPI im-
plementation issues on PIMs. Initial analysis of this proto-
type has indicated that PIMs perform some MPI operations
more efficiently than current commodity technologies.

The remainder of this paper is organized as follows. The
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Figure 1. PIM System

PIM computational model used for this work is presented
in Section 2. This is followed by details of the MPI im-
plementation for this model in Section 3. The evaluation
methods used are discussed in Section 4, and some prelim-
inary results are shown in Section 5. Section 6 presents a
comparison to related work. Finally, conclusions and future
work are presented in Section 7.

2. Processing-In-Memory

Processing-in-Memory (PIM) [14, 7, 21] also known as
Intelligent RAM[22], embedded RAM, or merged logic and
memory, combines both high speed logic and dense DRAM
on the same die. This arrangement exploits the tremen-
dous amounts of available on-chip bandwidth (potentially
terabytes per second) and provides very low latency ac-
cess (10 ns or better) to a large amount of local state (up
to 2048 bits at a time). While this has clear application
to systems-on-a-chip, its impact on the high performance
community is just beginning to be felt. To date the chips
that have been built for standalone high end applications
have for the most part supported conventional execution
models - pure SIMD (e.g. Terasys) to pure MIMD (e.g.
Execube[12]). Other experimental systems have still relied
on a conventional CPU for overall control or centralized
processing (e.g. DIVA[11]), or looked to the outside world
as an SMP on a chip with message-passing link interfaces
between chips (Blue Gene[1]).

This paper assumes a newly emerging view of PIM-
based supercomputers (Figure 1) [13, 15, 7]. In this All-
PIM system, there is nothing but PIM chips, with each
PIM chip containing multiple self-contained memory units
(MUs). Each MU has an attached logic unit (LU) on which
is implemented a specially designed processor whose ISA
can take advantage of the wide words that can be fetched
from the MUs, and the high bandwidth and low latency with
which such accesses can be performed (e.g. PIM Lite). By
2007, for example, such chips could contain dozens of such
LU/MU nodes, each running at several GHz and hosting 10s
of MB in its MU.

Equally important is how any of these nodes view the

other nodes. First, there is nothing other than these chips.
Second, they all look like memory; requests for access is
through memory addresses, with the LU that handles the
processing for any particular request simply an anonymous
processor that just happens to be nearby the designated
memory location. An All-PIM system is thus a sea of mem-
ory about which requests for access and/or processing flit
on the basis of memory addresses. Third, these requests
are much more than dumb memory accesses. They can
be requests for serious processing to occur at the targeted
address, ranging from atomic memory operations (AMOs)
(e.g. add to memory), to remote method, or even complete
program invocations. Finally, because there are many MUs
in a system (potentially millions), such a system appears as
some sort of very large multi-threaded shared memory ma-
chine.

We term the communication mechanism that transports
these requests as parcels (PARallel Computing Elements).
As with a traditional dumb memory request, a parcel holds
at least a target memory address (used for routing), a com-
mand, and/or a few pieces of data (simple operands). There
may also be a larger data payload to transport blocks such
as cache lines. In an All-PIM system, however, the com-
mand may also be interpreted as a program counter, and the
operands as a small set of registers. Novelty comes into
play in considering computational threads in size between
the single operation AMOs and the arbitrarily long node-
resident threads resulting from an RPI. In particular, small
threadlets can represent some short sequence of processing
that can be done at one node, and then move to some other
MU associated with the next piece of data. The command
and operands capture the thread state, while the payload
may be used for either blocks of data, or a cache of sorts
that can minimize movements to retrieve previously visited
data[20].

For this paper we assume that individual MU/LU are run-
ning conventional node level applications programs as one
or more of their threads. When such programs perform an
MPI function, some mix of parcel-based threads performs
the bulk of the work of moving the message from one node
to another. We assume that the LU nodes are much like a
second generation PIM Lite - 4 stage pipelined, with each
stage supporting a separate thread.

3. MPI Implementation using Parcels

The goal of MPI for PIM is to provide a viable “proof
of concept” and a testbed for exploring the issues of imple-
menting MPI on a PIM system. Specifically, it explores the
effects of a highly multi-threaded programming model on
MPI’s complexity and performance. As a limited testbed,
MPI for PIM implements only a subset of the MPI-1.2
standard[18]. MPI Barrier(), and point-to-point com-
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munication were implemented. Support for user datatypes,
and multiple communicators were not.

3.1. Effects of threading

MPI for PIM uses pervasive multi-threading to achieve
concurrency, reduce the complexity of the implementa-
tion, and hide latency. To avoid the traditionally high
costs of thread synchronization and programming, MPI for
PIM leverages two features of the PIM programming model:
fine-grain locking and thread migration.

Conventional single thread implementations of MPI of-
ten have difficulty achieving true concurrency with non-
blocking communication. After requests are enqueued, the
status of the request can only be advanced when a call is
made to MPI. Thus, whenever any MPI call is made, a sin-
gle thread MPI must iterate through its list of outstanding
requests and attempt to update their status. This can result in
significant overhead as the MPI implementation must “jug-
gle” all outstanding requests whenever an MPI call is made
[24]. By using threads, MPI for PIM avoids juggling re-
quests. Requests are assigned a thread which can advance
the request without having to wait for an MPI call.

Fine-grain interwoven threads can also reduce or hide la-
tency. For example, a call to memcpy() can be divided
among several threads, allowing the parallelizing of the
copy and fully utilizing the processor pipeline by avoiding
stalls.

Traveling threads allow the communication of not just
“dumb” data, but also a thread of execution. In MPI for
PIM, this means that a receiving process does not have to
dedicate resources to monitoring incoming messages and
responding to them. Instead a sent message causes a thread
migration to the destination process. Once there, the send-
ing thread continues execution, performing any required re-
source management or copying. Because each incoming
message is a thread, it can “look after itself.” This avoids
having to “juggle” multiple MPI requests.

3.2. Key Data Structures

Each MPI process has two main queues which coordi-
nate communication between the threads on that node:

� Posted Queue: contains MPI requests for re-
ceive operations which have posted a buffer to be re-
ceived into, but which are not yet completed. Calls to
MPI Irecv() add to this list.

� Unexpected Queue: contains requests from
messages which arrived at an MPI process, but could
not find a posted buffer to be copied into. These mes-
sages will allocate a buffer and copy their data to it

main()

MPI_ISend()

Test

checkSize

Copy Data & 
Migrate to 

Destination

Expected?

Check
Posted

Deliver to 
Unexpected

Deliver to 
Posted Buffer

Migrate To 
Destination

Check
Posted

Expected?

Migrate to 
Source & Copy 

Data

Migrate to 
Destination & 
Deliver Data

Wait for 
Buffer

End ISend 
Thread

Post
Dummy

Eager

Rendezvous

YesNo

Yes

No

Figure 2. Implementation of MPI Isend() in
MPI for PIM

(for eager messages) or post a “dummy” entry (for
rendezvous messages).

Each queue member is protected by a full empty bit lock,
instead of a single lock for the entire queue. This allows
multiple threads to traverse the queue concurrently, and the
individual locks allow modifications to queue elements to
be atomic.

3.3. Implementation of MPI Isend()

All calls to MPI Isend() spawn a new thread. This
thread takes one of two paths of execution, depending on the
message size, as illustrated in Figure 2. Dashed lines show
the flow of the calling thread with solid lines illustrating the
flow of the Isend thread.

Data buffers for “Eager” messages (below 64K) are im-
mediately assembled into a parcel for transfer across the
network. Once assembled, the MPI Isend() request can
be marked as “done” and the thread will migrate to the des-
tination process. Upon arriving, the Isend thread checks the
posted queue for a matching buffer. If it finds a match,
it delivers the message data. Otherwise, the thread allocates
a suitable buffer and places a request on the unexpected
queue.

Messages larger than 64K utilize a rendezvous proto-
col. The Isend thread migrates to the destination node and
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Figure 3. Implementation of MPI Irecv() and
MPI Probe() in MPI for PIM

checks for a posted buffer. If it finds such a buffer the thread
will claim the buffer and prevent other threads copying data
into it by removing it from the posted queue. The Isend
thread will then return to its source node, and transfer the
message data back to the waiting buffer.

If a rendezvous send cannot find a posted buffer, it will
post a “dummy” message envelope to the unexpected
queue and wait for a buffer to become available. By post-
ing to the unexpected queue, calls to MPI Probe()
are made aware of the rendezvous message. Also, the
“dummy” request preserves ordering semantics by ensuring
that receive requests will find and match incoming messages
in the correct order. When a recieve matches this request it
modifies the “dummy” request to inform the waiting unex-
pected message thread where the recieve buffer is.

3.4. Implementation of MPI Irecv() and
MPI Probe()

MPI Irecv() and MPI Probe() both follow some-
what similar paths (Figure 3). Because MPI Irecv() is
nonblocking, it begins with a thread spawn. MPI Probe()
is blocking, so it is does not execute in another thread.
MPI Irecv() first checks the status of its request, as

the request may have already been completed by an incom-
ing send. If the request has not been completed, the Irecv
thread checks the unexpected queue for a match. If no
match is found, it posts its request to the posted queue
and exits. To preserve MPI ordering semantics, the unex-
pected queue is locked while it is being checked and
the receive is posted.
MPI Probe() repeately checks the unexpected

queue for a match.

4. Evaluation Methods

The initial comparison of MPI for PIMs and commodity
processors is focused on measurements of the complexity
of the code paths for some core MPI routines. Thus, it is
based on a simplistic microbenchmark. Traces of this mi-
crobenchmark under a variety of possible usage scenarios
were taken and compared for MPICH 1.2.5 and LAM-MPI
6.5.9 on a PowerPC and for MPI for PIM on a simulated
PIM architecture. This section describes the benchmark and
the methodology that was used for tracing and simulation.

4.1. Benchmark

The microbenchmark[5] used for this evaluation was
written at Sandia National Labs to consider the impact
of posted versus unexpected receives. The code uses
a combination of MPI Irecv, MPI Send, MPI Recv,
MPI Barrier, MPI Probe, and MPI Waitall to con-
trol the percentage of messages that are unexpected. The
test sends 10 messages of parameterizable size in each di-
rection (for a total of 20 sequential sends). This benchmark
was used for this analysis because it effectively exercised
a small set of the most commonly used MPI routines un-
der varying usage scenarios. This allowed us to vary the
code paths taken and study the impact of those code paths
on instruction count, memory references, and instructions
per cycle (IPC).

4.2. Trace Based Analysis

Traces for the baseline conventional implementations
(LAM and MPICH) were gathered on an Apple Macintosh
Power Mac with a PowerPC MPC7450 (G4�) processor
running at 1Ghz. This platform was running Darwin ker-
nel version 6.6 (Mac OS X 10.2.6). The amber utility [2]
was used to gather instruction traces of the microbenchmark
described in Section 4.1 using both LAM and MPICH im-
plementations of MPI. These instruction traces were then
converted to an architecture independent format called TT7
for further analysis.

Execution of MPI for PIM was performed on a PIM Ar-
chitectural simulator, which can also generate traces. The
architecture simulated mirrored a possible 2nd generation
PIM Lite. The MPI for PIM source code was instrumented
with special tracing functions so instructions in the trace
could be categorized into broad categories (see Section 5.2).
To generate execution times for MPI for PIM, the traces
from the architectural simulator were simulated on a PIM
Trace-based simulator.
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Table 1. Configurations used for simulation

Variable simg4 PIM

memory lat., open page 20 cycles 4 cycles
memory lat., closed page 44 cycles 11 cycles
L2 latency 6 cycles NA
Pipelines 7 1
Pipeline Depth 4 (integer) 4 (interwoven)

To provide a fair comparison between MPI for PIM and
other implementations, sections of the LAM and MPICH
traces that concerned functionality not implemented in MPI
for PIM were discounted. These include functions that dealt
with specifics of the network interface, bookkeeping, de-
bugging, datatype or communicator lookup, byte ordering,
and parameter checking. Such functions were identified and
any instructions in the trace which executed in these func-
tions were removed. To accomplish this, a disassembler was
used to find mappings between instructions in the TT7 Trace
and functions in LAM or MPICH.

4.3. Simulation Based Analysis

Cycle counts for execution on the PowerPC were ob-
tained using the simg4 cycle accurate simulator from Mo-
torola [19]. This simulator produced accurate cycle counts,
instruction mixes, pipeline stall counts, and cache perfor-
mance data. Cycle count estimates for the instruction cat-
egories for each function shown in Section 5.2 were esti-
mated using output from simg4. Pipeline stall counts for
memory instructions were used to calculate an approximate
IPC for memory instructions. Given this number, the num-
ber of memory instructions, and the overall number of cy-
cles to execute the function trace, it was possible to estimate
the average IPC of non-memory instructions for that func-
tion. The relative number of memory to non-memory in-
structions belonging to each instruction category were com-
bined with the IPC estimates to produce a cycle estimate for
each category.

The PIM Architectural simulator is based off of the Sim-
pleScalar tool set [8]. It extends the PISA ISA to add extra
PIM functionality such as thread migration and the manipu-
lation of Full/Empty Bits. It can simulate multiple PIMs and
includes support for adjusting several architectural features
(Table 1).

5. MPI Performance Impact

This section presents results comparing various aspects
of the performance of the MPI for PIM prototype and MPI
implementations on commodity platforms. As described in

Section 4, only the aspects of MPI that were implemented
in MPI for PIM were analyzed. Comparisons are presented
for eager (256 bytes) and rendezvous (80 KB) transfers.

5.1. Overhead Reduction

An important aspect of MPI for PIM is a reduction in
the overhead of MPI calls. MPI overhead includes time
spent performing tasks other than network communication
and buffer copies. With a pervasively multi-threaded imple-
mentation, MPI for PIM can avoid much of the MPI state
swapping, or “juggling”, that must occur in a single thread
MPI. MPI for PIM executes fewer overhead instructions
than LAM, and usually fewer instructions than MPICH
(Figure 4(a-b)). The PIM implementation also makes fewer
memory references (Figure 4(c-d)). The reduction in mem-
ory references is compounded because the PIM processor is
“closer” to the memory. So, memory references on PIMs
tend to be lower latency than on conventional machines.
Combining the reduction in memory references with the im-
provement in memory access time yields a significant re-
duction in the time spent accessing memory.

Because MPI for PIM’s memory references are fewer
and faster, its overall IPC tends to be high. MPICH suffers
from a high branch misprediction rate (up to 20%), which
usually limits its IPC to less than 0.6. LAM’s IPC for ea-
ger messages is high, however, for longer messages it suf-
fers from data cache misses which limit its performance.
These differences in IPC and executed instructions result in
an overall cycle count which is lower than the conventional
MPIs. For eager sends, MPI for PIM averages 57% less
overhead than MPICH and 42% less than LAM. For ren-
dezvous sends, MPI for PIM averages 58% less overhead
than MPICH and 78% less than LAM.

The actual time spent in MPI would depend on the fab-
rication process used in a PIM processor. However, a PIM
pipeline would generally be much simpler than a conven-
tional processor and would probably be able to run at a
similar clock rate. Additionally, as conventional proces-
sor speeds grow, the latency between memory and proces-
sor would also increase further limiting conventional per-
formance.

5.2. MPI Function Analysis

To explain the performance differences between MPI for
PIM and conventional single threaded MPIs, it is useful to
examine several of the major MPI calls. The overhead in
these calls can be classified into one of four behaviors:

� State Setup/Update: Initialization and update of
MPI Requests and internal state dealing with the
progress of a function.
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Figure 4. Total instructions (excluding network instructions) executed in MPI routines for benchmark appli-
cation using (a) eager sends and (b) rendezvous sends; Number of memory accesses (excluding network
instructions) by MPI routines for benchmark application using (c)eager sends and (d) rendezvous sends.
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Figure 6. A breakdown of the CPU cycles spent in each of three routines for (a)eager sends and (b) ren-
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(e)eager sends and (f) rendezvous sends. All breakdowns exclude network and memory copy instructions.
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� Cleanup: Deallocation of data structures, unlocking
of synchronization controls, removal of requests from
lists or queues.

� Queue Handling: Iterating through lists or queues
to advance requests or match envelopes. May also
include searching hash tables for matches (LAM) and
acquiring synchronization locks (MPI for PIM).

� Juggling: Time spent switching from the MPI con-
text of one request to another in single threaded MPIs.
This generally occurs when there are multiple out-
standing non-blocking requests and MPI must check
each to see if progress can be made on them.

MPI for PIM generally executes MPI functions with less
overhead than single threaded MPIs. This improvement
comes from several sources such as: faster memory ac-
cesses, reduced state setup for the rendezvous protocol, and
elimination of the need to “juggle” multiple requests.

MPI for PIM requires fewer cycles to setup and maintain
state in several key MPI functions, especially when compar-
ing the rendezvous protocol (Figure 6(a-b)). This is due to
the use of “intelligent” traveling threads to perform sends.
A conventional MPI must expend cycles initializing and up-
dating a send request, and then interpreting the incoming
data and dispatching it based upon protocol. In effect, a
conventional MPI must setup the state information for send
twice. In contrast, an incoming thread in an MPI based upon
traveling threads is already initialized and can “dispatch it-
self”.

Another advantage of MPI for PIM is that MPI func-
tions do not have to switch contexts from one MPI request
to another to advance pending requests. The overhead of
this “juggling” of requests can be quite significant (Figure
6(c-d)), especially since this class of behavior tends to re-
quire a large number of memory accesses (Figure 6(e-f)).
In LAM, it accounted for 14% to 60% of MPI overhead
instructions, depending on the number of outstanding re-
quests. In MPICH, it accounted for between 18% and 23%.

There are some cases where MPI for PIM per-
forms poorly compared to LAM or MPICH. MPICH’s
MPI Send() can outperform MPI for PIM with ren-
dezvous sized messages. It appears that MPICH’s send per-
forms a “short-circuit” type optimization and bypasses the
normal queuing and device checking procedures. Lastly,
MPI for PIM often requires more instructions in cleanup
activities, probably due to the extra queue unlocking which
is required for synchronization.

5.3. Other Performance Impacts

MPI frequently requires memory copies to handle un-
expected messages, pack data, assemble messages, and
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perform shared memory communication. These memory
copies can account for a significant percentage of the total
time spent in MPI, especially for large message sends. Con-
ventional processors suffer significant performance degra-
dation when performing memory copies which exhaust their
cache. This effect is shown in Figure 7(c). A PowerPC G4
(32K L1 data cache) can perform a memcpy() of less than
32K at an IPC close to 1.0. However, larger memory copies
show a performance drop, with IPCs less than 0.4. This drop
in performance is a graphic depiction of hitting the “mem-
ory wall” and will only become more pronounced as the gap
between memory and processor speeds grows.

PIM processors have several advantages when perform-
ing memory copies. The first is that a PIM processor is
“closer” to memory. It does not have to go through sev-
eral layers of cache, but is connected directly to the memory
macro. Additionally, it is possible to copy a full DRAM row
at a time, which gives it dramatically higher bandwidth. By
utilizing the architectural features of PIM to reduce mem-
ory copy times, MPI time could be considerably reduced
(Figure 7(a) and (b)).

6. Related Work

The prototype MPI implementation that we have de-
scribed in this paper is very similar to other MPI imple-
mentations on top of active message layers, such as those
described in [9, 16, 3]. It is also similar to implementations
that have been built on networks that have remote DMA
(RDMA) capability, such as those described in [4, 10, 17].
However, the traveling thread model is able to support some
features of MPI much more efficiently.

For example, most of the implementations of MPI on
top of active messages require the process to poll the net-
work in order to process messages and activate message
handlers. This can lead to inefficiencies when the receiv-
ing process is not running, and, in some cases, may violate
the progress rule of MPI. Hardware support for traveling
threads increases the ability of remote processing to occur
on the arrival of messages without interference from the op-
erating system and without requiring the receiving process
to waste processor cycles polling the network.

Existing RDMA-based implementations of MPI also suf-
fer from similar issues. Messages can arrive without ex-
plicitly polling by the receiver, but the MPI library must
actively notice incoming messages and process them. For
example, a short message is typically written into a buffer
that is managed by the MPI library, and is later copied into
a receive buffer. This can only occur after the MPI library
notices that it has arrived. Traveling threads allow for this
processing to happen immediately upon thread arrival.

7. Conclusions and Future Work

This work is based on a PIM architecture that could form
the basis for commodity cluster computing in the future.
As such, it is important to consider the implications of this
technology for current computing paradigms. This work
presents an analysis of an initial implementation of MPI on
PIM architectures. Although the PIM architecture is explic-
itly designed for parallelism, it is not explicitly designed
to support MPI. Despite this, the preliminary analysis indi-
cates that a PIM architecture will support MPI very well,
and may reduce the complexity of the MPI implementation
via inherent multi-threading. In terms of performance, MPI
for PIM requires fewer CPU cycles than equivalent com-
modity implementations for many of the operations. This
is attributable to a significant reduction in total instructions
(through the use of special features in the PIM) and an in-
crease in instructions per cycle (IPC). Overall, this work
demonstrates that an MPI implementation for PIM is not
only possible, but is likely to perform at least as well as
what is found on commodity systems.

Only a preliminary analysis is presented here. Future
work will focus on implementing more of the MPI stan-
dard to permit application simulation on the architectural
simulator and to further study MPI performance improve-
ments achievable with PIMs. For example, PIM instruction
sets will likely provide vector types of operations on ex-
tremely wide words. Additionally, the extremely high mem-
ory bandwidth provided by PIMs may offer a significant win
for applications using MPI derived datatypes. Also, PIMs
can offer extremely fine grained synchronization methods
that will allow automated exploitation of opportunities for
communication and computation overlap. For example, it
may be possible to allow an MPI Recv to return before all
of the data has arrived. Fine grained synchronization could
then block the application if it attempted to access a portion
of the data that has not arrived. Finally, PIMs may also sup-
port the MPI-2 one-sided communication functions very ef-
ficiently, especially the accumulate operation, which allows
for operations to be performed on remote data.
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